论文标题
从2D Echo视图的3D心脏重建的有效Pix2Vox ++
Efficient Pix2Vox++ for 3D Cardiac Reconstruction from 2D echo views
论文作者
论文摘要
人心脏的准确几何定量是诊断多种心脏疾病的关键步骤,以及心脏患者的治疗。超声成像是心脏成像的主要方式,但是采集需要高操作员的技能,由于工件,其解释和分析很困难。在3D中重建心脏解剖结构可以实现新的生物标志物,并使成像降低对操作员的专业知识的依赖,但是大多数超声系统仅具有2D成像功能。我们提出了对Pix2Vox ++网络的简单变化,以大大降低记忆使用和计算复杂性,以及从2D标准心脏视图中对3D解剖结构进行重建的管道,有效地从有限的2D数据中启用了3D解剖学重建。我们使用合成生成的数据来评估我们的管道,从而从只有两个标准的解剖学2D视图中获得了准确的3D全心重建(峰值相交> 0.88)。我们还使用真实回声图像显示了初步结果。
Accurate geometric quantification of the human heart is a key step in the diagnosis of numerous cardiac diseases, and in the management of cardiac patients. Ultrasound imaging is the primary modality for cardiac imaging, however acquisition requires high operator skill, and its interpretation and analysis is difficult due to artifacts. Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers and make imaging less dependent on operator expertise, however most ultrasound systems only have 2D imaging capabilities. We propose both a simple alteration to the Pix2Vox++ networks for a sizeable reduction in memory usage and computational complexity, and a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views, effectively enabling 3D anatomical reconstruction from limited 2D data. We evaluate our pipeline using synthetically generated data achieving accurate 3D whole-heart reconstructions (peak intersection over union score > 0.88) from just two standard anatomical 2D views of the heart. We also show preliminary results using real echo images.