论文标题
平面集的密度避免了单位距离
The density of planar sets avoiding unit distances
论文作者
论文摘要
通过改进对L. Moser提出的问题的先前估计,我们证明ERDS的猜想是,避免单位距离的任何可测量平面集的密度都不能超过$ 1/4 $。我们的论点意味着上限为$ 0.2470 $。
By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdős that the density of any measurable planar set avoiding unit distances cannot exceed $1/4$. Our argument implies the upper bound of $0.2470$.