论文标题

湍流分散体中的普遍对齐

Universal alignment in turbulent pair dispersion

论文作者

Shnapp, Ron, Brizzolara, Stefano, Neamtu-Halic, Marius M., Gambino, Alessandro, Holzner, Markus

论文摘要

自然和工业的无数过程,从雨滴成核到海洋中的浮游生物相互作用,与局部浓度的趋势波动密切相关。这些波动可以通过考虑粒子对之间的分离的变化(称为对分散体)来描述这些波动,根据理查森的理论,据称可以服从时间生长的立方体。我们的工作揭示了以平均角度分散粒子的相对速度和位置向量之间的通用,尺度不变的比对,我们表明这是湍流的通用常数。我们将这种平均角度的价值与理查森的传统理论联系起来,并与数值模拟和实验室实验的数据达成一致。虽然仅在小初始粒子分离中观察到了理查森的立方体状态,但平均角度的恒定体在整个湍流的惯性范围内表现出来。因此,我们的工作通过几何范式揭示了湍流对分散的普遍性,该范式的有效性超出了经典理论的范围,并为理解和建模运输和混合过程提供了一种新颖的框架。

Countless processes in nature and industry, from rain droplet nucleation to plankton interaction in the ocean, are intimately related to turbulent fluctuations of local concentrations of advected matter. These fluctuations can be described by considering the change of the separation between particle pairs, known as pair dispersion, which is believed to obey a cubic in time growth according to Richardson's theory. Our work reveals a universal, scale-invariant alignment between the relative velocity and position vectors of dispersing particles at a mean angle that we show to be a universal constant of turbulence. We connect the value of this mean angle to Richardson's traditional theory and find agreement with data from a numerical simulation and a laboratory experiment. While the Richardson's cubic regime has been observed for small initial particle separations only, the constancy of the mean angle manifests throughout the entire inertial range of turbulence. Thus, our work reveals the universal nature of turbulent pair dispersion through a geometrical paradigm whose validity goes beyond the classical theory, and provides a novel framework for understanding and modeling transport and mixing processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源