论文标题
重建稀疏的多路复用网络,并应用于秘密网络
Reconstructing Sparse Multiplex Networks with Application to Covert Networks
论文作者
论文摘要
网络结构提供了关键信息,以了解网络的动态行为。但是,现实世界网络的完整结构通常不可用,因此开发推断网络更完整结构的方法至关重要。在本文中,我们集成了用于将随机网络生成随机网络的配置模型中的期望 - 最大化 - 聚集(EMA)框架,以重建多路复用网络的完整结构。我们在几个现实世界多路复用网络(包括秘密和公开网络)上对随机模型验证了所提出的EMA框架。发现与EM框架和随机模型相比,EMA框架通常可以达到最佳的预测精度。随着层数的增加,EMA的性能提高了EM的降低。可以利用推断的多路复用网络,以告知监视秘密网络的决策,并分配有限的资源来收集其他信息以提高重建精度。对于执法机构,可推断的完整网络结构可用于制定秘密网络拦截的更有效的策略。
Network structure provides critical information for understanding the dynamic behavior of networks. However, the complete structure of real-world networks is often unavailable, thus it is crucially important to develop approaches to infer a more complete structure of networks. In this paper, we integrate the configuration model for generating random networks into an Expectation-Maximization-Aggregation (EMA) framework to reconstruct the complete structure of multiplex networks. We validate the proposed EMA framework against the random model on several real-world multiplex networks, including both covert and overt ones. It is found that the EMA framework generally achieves the best predictive accuracy compared to the EM framework and the random model. As the number of layers increases, the performance improvement of EMA over EM decreases. The inferred multiplex networks can be leveraged to inform the decision-making on monitoring covert networks as well as allocating limited resources for collecting additional information to improve reconstruction accuracy. For law enforcement agencies, the inferred complete network structure can be used to develop more effective strategies for covert network interdiction.