论文标题
重尾和修剪可编程的光子电路
Heavy tails and pruning in programmable photonic circuits
论文作者
论文摘要
为高维统一操作员开发硬件在实施量子计算和深度学习加速度中起着至关重要的作用。由于固有的单位性,超快可调性和光子平台的能源效率,可编程光子电路是通用单位的单一有希望的候选者。但是,当光子电路的尺度增加时,噪声对量子运算符和深度学习重量矩阵的保真度的影响变得更加严重。在这里,我们证明了旋转操作员的大规模可编程光子电路较重的尾部分布的非平凡随机性,从而通过设计多余的旋转修剪来开发高保真的通用单位。在存在集线器相位变速器的情况下揭示了传统的可编程光子电路架构的功率定律和帕累托原理,从而使网络修剪应用于光子硬件的设计。我们提取一种通用体系结构,用于修剪随机的统一矩阵,并证明“有时会更好地被删除”以实现高忠诚度和能源效率。该结果降低了大规模量子计算和光子深度学习加速器中高保真度的障碍。
Developing hardware for high-dimensional unitary operators plays a vital role in implementing quantum computations and deep learning accelerations. Programmable photonic circuits are singularly promising candidates for universal unitaries owing to intrinsic unitarity, ultrafast tunability, and energy efficiency of photonic platforms. Nonetheless, when the scale of a photonic circuit increases, the effects of noise on the fidelity of quantum operators and deep learning weight matrices become more severe. Here we demonstrate a nontrivial stochastic nature of large-scale programmable photonic circuits-heavy-tailed distributions of rotation operators-that enables the development of high-fidelity universal unitaries through designed pruning of superfluous rotations. The power law and the Pareto principle for the conventional architecture of programmable photonic circuits are revealed with the presence of hub phase shifters, allowing for the application of network pruning to the design of photonic hardware. We extract a universal architecture for pruning random unitary matrices and prove that "the bad is sometimes better to be removed" to achieve high fidelity and energy efficiency. This result lowers the hurdle for high fidelity in large-scale quantum computing and photonic deep learning accelerators.