论文标题

Weibull Lifetime Distributions下的间歇性监控的替补测试的强大推断

Robust inference for intermittently-monitored step-stress tests under Weibull lifetime distributions

论文作者

Balakrishnan, Narayanaswamy, Jaenada, María, Pardo, Leandro

论文摘要

许多现代产品在正常工作条件下表现出很高的可靠性。在这些条件下进行生命测试可能会导致几乎没有观察到的失败,而不足以进行准确的推断。取而代之的是,必须执行加速的生命测试(ALTS)。最受欢迎的ALT设计之一是Step Axpers Test测试,该测试通过逐步增加在某些预先指定的时间进行单位的应力水平来缩短产品的寿命。基于最大似然估计量(MLE)的经典估计方法具有合适的渐近特性,但缺乏健壮性。也就是说,数据污染物显着影响统计分析。在本文中,我们基于密度差异(DPD)为高度可靠的设备开发了可靠的推论方法,用于在阶跃压力模型下进行间歇性监测和Weibull Lifetime分布的估算和测试。我们从理论上和经验上检查了最小DPD估计器的渐近和鲁棒性特性以及相关的WALD型测试统计。此外,我们为某些重要的寿命特征开发了强大的估计器和置信区间。使用稳健的方法分析了太阳能灯中的温度,中型硅双极晶体管和LED灯的影响。

Many modern products exhibit high reliability under normal operating conditions. Conducting life tests under these conditions may result in very few observed failures, insufficient for accurate inferences. Instead, accelerated life tests (ALTs) must be performed. One of the most popular ALT designs is the step-stress test, which shortens the product's lifetime by progressively increasing the stress level at which units are subjected to at some pre-specified times. Classical estimation methods based on the maximum likelihood estimator (MLE) enjoy suitable asymptotic properties but they lack robustness. That is, data contaminationcan significantly impact the statistical analysis. In this paper, we develop robust inferential methods for highly reliable devices based on the density power divergence (DPD) for estimating and testing under the step-stress model with intermittent monitoring and Weibull lifetime distributions. We theoretically and empirically examine asymptotic and robustness properties of the minimum DPD estimators and associated Wald-type test statistics. Moreover, we develop robust estimators and confidence intervals for some important lifetime characteristics. The effect of temperature in solar lights, medium power silicon bipolar transistors and LED lights using real data arising from an step-stress ALT is analyzed applying the robust methods proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源