论文标题

用层次的贝叶斯思想解决婴儿直觉基准

Solving the Baby Intuitions Benchmark with a Hierarchically Bayesian Theory of Mind

论文作者

Zhi-Xuan, Tan, Gothoskar, Nishad, Pollok, Falk, Gutfreund, Dan, Tenenbaum, Joshua B., Mansinghka, Vikash K.

论文摘要

为了促进开发新模型以弥合机器与人类社会情报之间的差距,最近提出的婴儿直觉基准(Arxiv:2102.11938)提供了一系列任务,旨在评估有关代理商的目标和行动,甚至是年轻的婴儿都展现的。在这里,我们根据层次的贝叶斯心理理论(HBTOM)提出了该基准的原则性贝叶斯解决方案。通过在代理目标和处置上包括层次的先验,对我们的HBTOM模型的推断几乎可以学习代理的效率和偏好,然后可以将其用于常识性的合理性判断,以判断有关后续代理行为。这种方法在大多数基准任务上实现了几乎完美的准确性,在产生可解释的人类的推论的同时,超过了深度学习和模仿学习基准,证明了结构化贝叶斯人类社会认知模型的优势。

To facilitate the development of new models to bridge the gap between machine and human social intelligence, the recently proposed Baby Intuitions Benchmark (arXiv:2102.11938) provides a suite of tasks designed to evaluate commonsense reasoning about agents' goals and actions that even young infants exhibit. Here we present a principled Bayesian solution to this benchmark, based on a hierarchically Bayesian Theory of Mind (HBToM). By including hierarchical priors on agent goals and dispositions, inference over our HBToM model enables few-shot learning of the efficiency and preferences of an agent, which can then be used in commonsense plausibility judgements about subsequent agent behavior. This approach achieves near-perfect accuracy on most benchmark tasks, outperforming deep learning and imitation learning baselines while producing interpretable human-like inferences, demonstrating the advantages of structured Bayesian models of human social cognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源