论文标题
艾森斯坦(Eisenstein)系列的大筛
The large sieve for self-dual Eisenstein series of varying levels
论文作者
论文摘要
我们证明,对于自dual Eisenstein系列的不同水平,本质上是最佳的大筛子不平等。可以将这种界限解释为对按高度订购的理性的大筛子不平等。证明方法是递归的,并且与希思棕色的二次大筛子以及康里,伊瓦尼克和soundararajan的渐近大筛子有一些共同点。
We prove an essentially optimal large sieve inequality for self-dual Eisenstein series of varying levels. This bound can alternatively be interpreted as a large sieve inequality for rationals ordered by height. The method of proof is recursive, and has some elements in common with Heath-Brown's quadratic large sieve, and the asymptotic large sieve of Conrey, Iwaniec, and Soundararajan.