论文标题

矩阵随机产物Lyapunov指数的规律性上限

Upper bound on the regularity of the Lyapunov exponent for random products of matrices

论文作者

Bezerra, Jamerson, Duarte, Pedro

论文摘要

We prove that if $μ$ is a finitely supported measure on $\text{SL}_2(\mathbb{R})$ with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not $α$-Hölder around $μ$ for any $α$ exceeding the Shannon entropy of $μ$ over the Lyapunov exponent of $μ$.

We prove that if $μ$ is a finitely supported measure on $\text{SL}_2(\mathbb{R})$ with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not $α$-Hölder around $μ$ for any $α$ exceeding the Shannon entropy of $μ$ over the Lyapunov exponent of $μ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源