论文标题

用矢量表示的基于图的轨迹预测变量的概括分析

Generalizability Analysis of Graph-based Trajectory Predictor with Vectorized Representation

论文作者

Lu, Juanwu, Zhan, Wei, Tomizuka, Masayoshi, Hu, Yeping

论文摘要

轨迹预测是自动驾驶汽车的重要任务之一。机器学习的最新进展使一系列高级轨迹预测算法。最近,许多研究人员都证明了使用图形神经网络(GNN)进行轨迹预测的有效性。但是,这些算法要么很少关注模型在各种情况下的推广性,要么只是假设培训和测试数据遵循相似的统计数据。实际上,当测试场景是看不见的或分布不足(OOD)时,由此产生的火车测试域转移通常会导致预测性能的显着降解,这将影响下游模块,并最终导致严重的事故。因此,重要的是要彻底研究预测模型的概括性,这不仅可以帮助识别其弱点,而且还提供了有关如何改善这些模型的见解。本文提出了使用特征归因方法的概括分析框架,以帮助解释黑框模型。对于案例研究,我们对利用矢量化表示的基于图形的最先进的轨迹预测指标提供了深入的概括分析。结果表明,由于域的转移而导致的性能降低,功能归因提供了见解,以识别这些问题的潜在原因。最后,我们得出结论的共同预测挑战以及训练过程引起的加权偏见如何恶化准确性。

Trajectory prediction is one of the essential tasks for autonomous vehicles. Recent progress in machine learning gave birth to a series of advanced trajectory prediction algorithms. Lately, the effectiveness of using graph neural networks (GNNs) with vectorized representations for trajectory prediction has been demonstrated by many researchers. Nonetheless, these algorithms either pay little attention to models' generalizability across various scenarios or simply assume training and test data follow similar statistics. In fact, when test scenarios are unseen or Out-of-Distribution (OOD), the resulting train-test domain shift usually leads to significant degradation in prediction performance, which will impact downstream modules and eventually lead to severe accidents. Therefore, it is of great importance to thoroughly investigate the prediction models in terms of their generalizability, which can not only help identify their weaknesses but also provide insights on how to improve these models. This paper proposes a generalizability analysis framework using feature attribution methods to help interpret black-box models. For the case study, we provide an in-depth generalizability analysis of one of the state-of-the-art graph-based trajectory predictors that utilize vectorized representation. Results show significant performance degradation due to domain shift, and feature attribution provides insights to identify potential causes of these problems. Finally, we conclude the common prediction challenges and how weighting biases induced by the training process can deteriorate the accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源