论文标题

SelfCollearn:为加速动态MR成像加速的自我监督的协作学习

SelfCoLearn: Self-supervised collaborative learning for accelerating dynamic MR imaging

论文作者

Zou, Juan, Li, Cheng, Jia, Sen, Wu, Ruoyou, Pei, Tingrui, Zheng, Hairong, Wang, Shanshan

论文摘要

最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从不足采样的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同训练损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的功能,可以从底面采样的K空间数据中捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。

Lately, deep learning has been extensively investigated for accelerating dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully sampled reference data for training, current approaches may have limited abilities in recovering fine details or structures. To address this challenge, this paper proposes a self-supervised collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from undersampled k-space data. The proposed framework is equipped with three important components, namely, dual-network collaborative learning, reunderampling data augmentation and a specially designed co-training loss. The framework is flexible to be integrated with both data-driven networks and model-based iterative un-rolled networks. Our method has been evaluated on in-vivo dataset and compared it to four state-of-the-art methods. Results show that our method possesses strong capabilities in capturing essential and inherent representations for direct reconstructions from the undersampled k-space data and thus enables high-quality and fast dynamic MR imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源