论文标题
同型的简单刺是2个spheres独特的
Simple spines of homotopy 2-spheres are unique
论文作者
论文摘要
如果包含地图是同质的等效性,则在紧凑型$ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ 4 $ x $中的$ 2 $ -Sphere被称为脊柱。如果$ 2 $ -Sphere的补充有Abelian基本组,则称为简单。我们证明,如果两个简单的刺表示$ h_2(x)$的同一生成器,那么它们是环境同位素的。特别是,该定理适用于打结痕迹的简单奶昔$ 2 $ -SPHERES。
A locally flatly embedded $2$-sphere in a compact $4$-manifold $X$ is called a spine if the inclusion map is a homotopy equivalence. A spine is called simple if the complement of the $2$-sphere has abelian fundamental group. We prove that if two simple spines represent the same generator of $H_2(X)$ then they are ambiently isotopic. In particular, the theorem applies to simple shake-slicing $2$-spheres in knot traces.