论文标题

不可变动的时间转换对称性

Non-invertible Time-reversal Symmetry

论文作者

Choi, Yichul, Lam, Ho Tat, Shao, Shu-Heng

论文摘要

在量规理论中,通常指出的是,时间逆转对称性仅存在$θ= 0 $或$π$,对于$2π$ - 周期性$θ$ - 角。在本文中,我们指出的是,在免费的麦克斯韦理论和大规模QED中,每个有理$θ$ - 角,即$θ=πp/n $,都有不可粘的时间反转对称性。不可逆转的时间转换对称性是由无逆的保守的反线运算符实现的。它是天真的时间反转转换和分数量子霍尔状态的组成。我们还发现在非亚洲仪表理论中类似的不可逆转的时间反转对称性,包括$ \ MATHCAL {n} = 4 $ $ su(2)$沿着位点$ |τ|τ| = 1 $在共同性上。

In gauge theory, it is commonly stated that time-reversal symmetry only exists at $θ=0$ or $π$ for a $2π$-periodic $θ$-angle. In this paper, we point out that in both the free Maxwell theory and massive QED, there is a non-invertible time-reversal symmetry at every rational $θ$-angle, i.e., $θ= πp/N$. The non-invertible time-reversal symmetry is implemented by a conserved, anti-linear operator without an inverse. It is a composition of the naive time-reversal transformation and a fractional quantum Hall state. We also find similar non-invertible time-reversal symmetries in non-Abelian gauge theories, including the $\mathcal{N}=4$ $SU(2)$ super Yang-Mills theory along the locus $|τ|=1$ on the conformal manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源