论文标题

基于压缩传感的稀疏MIMO阵列优化宽带近场成像

Compressive Sensing Based Sparse MIMO Array Optimization for Wideband Near-Field Imaging

论文作者

Wang, Shuoguang, Li, Shiyong, Hoorfar, Ahmad, Miao, Ke, Zhao, Guoqiang, Sun, Houjun

论文摘要

在近场毫米波成像的区域中,广义稀疏阵列合成(SAS)方法的需求很大。传统方法通常采用贪婪的算法,这可能存在融合问题。本文提出了一个基于压缩传感(CS)方法的多输入多输出(MIMO)阵列设计的凸优化模型。我们生成一个块状参考模式,用于优化目标。该模式占据了整个感兴趣的成像区域,以便将每个像素的效果涉及到优化模型。在MIMO场景中,我们可以修复传输子阵列并合成接收子阵列,反之亦然,或依次进行合成。详细研究了与聚焦,局部抑制和抑制光栅裂片相关的问题。数值和实验结果表明,综合稀疏阵列比具有相同数量的天线元件的稀疏阵列可以提供更好的图像质量。

In the area of near-field millimeter-wave imaging, the generalized sparse array synthesis (SAS) method is in great demand. The traditional methods usually employ the greedy algorithms, which may have the convergence problem. This paper proposes a convex optimization model for the multiple-input multiple-output (MIMO) array design based on the compressive sensing (CS) approach. We generate a block shaped reference pattern, to be used as an optimizing target. The pattern occupies the entire imaging area of interest in order to involve the effect of each pixel into the optimization model. In MIMO scenarios, we can fix the transmit subarray and synthesize the receive subarray, and vice versa, or doing the synthesis sequentially. The problems associated with focusing, sidelobes suppression, and grating lobes suppression of the synthesized array are examined in details. Numerical and experimental results demonstrate that the synthesized sparse array can offer better image qualities than the sparse arrays with equally spaced or randomly spaced antennas with the same number of antenna elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源