论文标题
基于图案的图表学习与化学分子的应用
Motif-based Graph Representation Learning with Application to Chemical Molecules
论文作者
论文摘要
这项工作考虑了在属性关系图(ARG)上表示表示学习的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍了他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用局部结构信息。处理连续边缘和节点功能的能力是MCM比现有基于图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron和/或消息传递在图神经网络中学习高级节点表示。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构上下文时要好得多。我们还通过将方法应用于几个分子基准来证明我们方法的性能和解释性优势。
This work considers the task of representation learning on the attributed relational graph (ARG). Both the nodes and edges in an ARG are associated with attributes/features allowing ARGs to encode rich structural information widely observed in real applications. Existing graph neural networks offer limited ability to capture complex interactions within local structural contexts, which hinders them from taking advantage of the expression power of ARGs. We propose Motif Convolution Module (MCM), a new motif-based graph representation learning technique to better utilize local structural information. The ability to handle continuous edge and node features is one of MCM's advantages over existing motif-based models. MCM builds a motif vocabulary in an unsupervised way and deploys a novel motif convolution operation to extract the local structural context of individual nodes, which is then used to learn higher-level node representations via multilayer perceptron and/or message passing in graph neural networks. When compared with other graph learning approaches to classifying synthetic graphs, our approach is substantially better in capturing structural context. We also demonstrate the performance and explainability advantages of our approach by applying it to several molecular benchmarks.