论文标题

向量流:结合流量占用和流量预测的图像和向量

VectorFlow: Combining Images and Vectors for Traffic Occupancy and Flow Prediction

论文作者

Huang, Xin, Tian, Xiaoyu, Gu, Junru, Sun, Qiao, Zhao, Hang

论文摘要

预测道路代理的未来行为是自动驾驶的关键任务。尽管现有模型在预测边际代理的未来行为方面取得了巨大的成功,但有效预测多种代理的一致的关节行为仍然是一个挑战。最近,提出了占用场的占用场表示,以通过占用网格和流量的结合来代表公路代理的联合未来状态,从而支持有效且一致的关节预测。在这项工作中,我们提出了一个新颖的占用流场预测因子,以通过结合图像编码器的功率来产生准确的占用和流动预测,该图像编码器从栅格化的流量图像中学习特征以及捕获连续代理轨迹和地图状态的信息的矢量编码器。在生成最终预测之前,这两个编码的功能由多个注意模块融合。我们简单但有效的模型在Waymo打开数据集占用和流预测挑战中排名第三,并在闭塞的占用和流动预测任务中取得了最佳性能。

Predicting future behaviors of road agents is a key task in autonomous driving. While existing models have demonstrated great success in predicting marginal agent future behaviors, it remains a challenge to efficiently predict consistent joint behaviors of multiple agents. Recently, the occupancy flow fields representation was proposed to represent joint future states of road agents through a combination of occupancy grid and flow, which supports efficient and consistent joint predictions. In this work, we propose a novel occupancy flow fields predictor to produce accurate occupancy and flow predictions, by combining the power of an image encoder that learns features from a rasterized traffic image and a vector encoder that captures information of continuous agent trajectories and map states. The two encoded features are fused by multiple attention modules before generating final predictions. Our simple but effective model ranks 3rd place on the Waymo Open Dataset Occupancy and Flow Prediction Challenge, and achieves the best performance in the occluded occupancy and flow prediction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源