论文标题
在具有较大内置电势的半导体单层中创建纳米侧面异质结
Creating a Nanoscale Lateral Heterojunction in a Semiconductor Monolayer with a Large Built-in Potential
论文作者
论文摘要
设计原子较薄的纳米级外侧异质结(HJS)的能力对于为将来的二维(2D)设备技术奠定基础至关重要。但是,通过直接生长两种不同材料的异质结构来创建异性结的传统方法限制了可用的频带偏移,并且尚不清楚2D材料是否可以实现大型内置电位。原子薄的半导体过渡金属二核苷(TMD)的电子特性不是静态的,它们的激子结合能和准粒子带隙在很大程度上取决于近端环境。最近的研究表明,可以利用这种效果来设计单层TMD的横向带曲线以创建异质结。在这里,我们通过在HBN/RU(0001)底物的界面上插入SE来证明单层Mose2中纳米级侧向异质结的合成。 SE Intercalation创建了局部HBN/RU工作函数的空间突然调制,该功能直接印在上覆的Mose2单层上,以创建0.83 eV的大型内置电位。我们使用扫描隧道光谱法解决了Mose2频段轮廓和工作函数,以绘制纳米级耗竭区域。 SE插入还改变了介电环境,影响了局部带隙重生,并将Mose2带隙增加了〜0.26 eV。这项工作说明,环境接近工程提供了一种强大的方法,可以间接操纵2D材料的频带曲线在其内部属性的范围之外,从而为将来的设备设计提供了途径。
The ability to engineer atomically thin nanoscale lateral heterojunctions (HJs) is critical to lay the foundation for future two-dimensional (2D) device technology. However, the traditional approach to creating a heterojunction by direct growth of a heterostructure of two different materials constrains the available band offsets, and it is still unclear if large built-in potentials are attainable for 2D materials. The electronic properties of atomically thin semiconducting transition metal dichalcogenides (TMDs) are not static, and their exciton binding energy and quasiparticle band gap depend strongly on the proximal environment. Recent studies have shown that this effect can be harnessed to engineer the lateral band profile of monolayer TMDs to create a heterojunction. Here we demonstrate the synthesis of a nanoscale lateral heterojunction in monolayer MoSe2 by intercalating Se at the interface of a hBN/Ru(0001) substrate. The Se intercalation creates a spatially abrupt modulation of the local hBN/Ru work function, which is imprinted directly onto an overlying MoSe2 monolayer to create a large built-in potential of 0.83 eV. We spatially resolve the MoSe2 band profile and work function using scanning tunneling spectroscopy to map out the nanoscale depletion region. The Se intercalation also modifies the dielectric environment, influencing the local band gap renormalization and increasing the MoSe2 band gap by ~0.26 eV. This work illustrates that environmental proximity engineering provides a robust method to indirectly manipulate the band profile of 2D materials outside the limits of their intrinsic properties, providing avenues for future device design.