论文标题

机器学习中使用的log-cosh损耗函数的统计属性

Statistical Properties of the log-cosh Loss Function Used in Machine Learning

论文作者

Saleh, Resve A., Saleh, A. K. Md. Ehsanes

论文摘要

本文分析了机器学习中使用的流行损失函数,称为对数科什损失函数。使用此损失函数发表了许多论文,但迄今为止,文献中尚未介绍统计分析。在本文中,我们介绍了产生的对数损失的分布函数。我们将其与类似的分布进行比较,称为Cauchy分布,并执行了其特征性特性的各种统计程序。特别是,我们检查了其相关的PDF,CDF,可能性功能和Fisher信息。并排考虑具有渐近偏差,渐近方差和置信区间的位置参数的MLE,我们考虑了CAUCHY和COSH分布。我们还提供了来自其他几个损失函数的强大估计器的比较,包括Huber损失函数和等级分散函数。此外,我们研究了对数字-COSH函数在分位数回归中的使用。特别是,我们确定了一个分位数分布函数,可以从中得出最大似然估计量。最后,我们将基于log-cosh的分位数m静态器与鲁棒单调性与基于卷积平滑的另一种分位回归方法进行了比较。

This paper analyzes a popular loss function used in machine learning called the log-cosh loss function. A number of papers have been published using this loss function but, to date, no statistical analysis has been presented in the literature. In this paper, we present the distribution function from which the log-cosh loss arises. We compare it to a similar distribution, called the Cauchy distribution, and carry out various statistical procedures that characterize its properties. In particular, we examine its associated pdf, cdf, likelihood function and Fisher information. Side-by-side we consider the Cauchy and Cosh distributions as well as the MLE of the location parameter with asymptotic bias, asymptotic variance, and confidence intervals. We also provide a comparison of robust estimators from several other loss functions, including the Huber loss function and the rank dispersion function. Further, we examine the use of the log-cosh function for quantile regression. In particular, we identify a quantile distribution function from which a maximum likelihood estimator for quantile regression can be derived. Finally, we compare a quantile M-estimator based on log-cosh with robust monotonicity against another approach to quantile regression based on convolutional smoothing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源