论文标题
线性各向同性的cosserat壳模型,其中最高$ o(h^5)$。存在和独特性
A linear isotropic Cosserat shell model including terms up to $O(h^5)$. Existence and uniqueness
论文作者
论文摘要
在本文中,我们得出了线性弹性cosserat壳模型,该模型将效果纳入了$ o(h^5)$中的壳厚度$ h $,这是最近引入的最近引入的几何非线性非线性弹性cosserat shell模型的特殊情况。解决方案的存在和独特性在合适的可允许集中得到了证明。为此,建立了壳体的KORN型不平等,可以在松弛的米尔格拉姆定理中显示强制性。我们还显示了截断的$ O(H^3)$模型的存在和独特结果。主要问题是对壳的弯曲参考配置的合适处理。突出显示了与经典的Koiter膜弯曲模型的一些连接。
In this paper we derive the linear elastic Cosserat shell model incorporating effects up to order $O(h^5)$ in the shell thickness $h$ as a particular case of the recently introduced geometrically nonlinear elastic Cosserat shell model. The existence and uniqueness of the solution is proven in suitable admissible sets. To this end, inequalities of Korn-type for shells are established which allow to show coercivity in the Lax-Milgram theorem. We are also showing an existence and uniqueness result for a truncated $O(h^3)$ model. Main issue is the suitable treatment of the curved reference configuration of the shell. Some connections to the classical Koiter membrane-bending model are highlighted.