论文标题

局部环上过滤的多重性的凸度

Convexity of multiplicities of filtrations on local rings

论文作者

Blum, Harold, Liu, Yuchen, Qi, Lu

论文摘要

我们证明,局部环的过滤多样性满足各种凸特性。特别是,我们表明多重性是沿着测量学的凸。结果,我们证明了估值的体积是准经济估值简单上的日志凸,并给出了Xu和Zhuang定理的新证明,以实现归一化量最小化的唯一性。在另一个方向上,我们将REE的理想性定理推广到过滤中,并表征Minkowski过滤的不平等现象在轻度假设下是平等的。

We prove that the multiplicity of a filtration of a local ring satisfies various convexity properties. In particular, we show the multiplicity is convex along geodesics. As a consequence, we prove that the volume of a valuation is log convex on simplices of quasi-monomial valuations and give a new proof of a theorem of Xu and Zhuang on the uniqueness of normalized volume minimizers. In another direction, we generalize a theorem of Rees on multiplicities of ideals to filtrations and characterize when the Minkowski inequality for filtrations is an equality under mild assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源