论文标题
相对论无旋转颗粒的均匀磁场,恒定静止质量:2D极空间
Uniform magnetic field on the relativistic spinless particles with constant rest mass: 2D polar space
论文作者
论文摘要
我们提出了一个相对论旋转0带电颗粒在均匀磁场中移动的相互作用建模。在没有改进的扰动方式的情况下,我们直接解决了Kummer的微分方程,包括主量子数。作为核相互作用的功能方法,我们考虑没有反粒子状态的粒子结合状态。在近似线至$ 1/r^4 $中,我们还改进了$ v(r)$$ \ neq $$ 0 $ 0 $和$ s(r)$$ = $$ 0 $ 0 $ 0 $的考虑因素。此外,我们为引入近似方案建立了一个亲密关系,其范围为$ 0.5 $和$ 1.0 $ $ \ $ \ MATHRM {FM} $。这样,最小耦合也可能会产生分析能量光谱。在自旋零相对论方案中,我们考虑了在均匀磁场下的反平方相互作用,并建立了能量水平随着相互作用能量的增加而增加(即,给定值的量子井宽度降低)。另外,能量水平随均匀磁场的较大值而增加。电荷分布也适用于中央交互接合空间。用$ V(r)$$ \ neq $$ 0 $和$ s(r)$$ = $$ 0 $将Spin-Zero运动的近似值放在2D极性空间中。
We present an interaction modeling for the relativistic spin-0 charged particles moving in a uniform magnetic field. In the absence of an improved perturbative way, we solve directly Kummer's differential equation including principal quantum numbers. As a functional approach to the nuclear interaction, we consider particle bound states without antiparticle regime. Within the approximation line to $1/r^4$, we have also improved the considerations of the $V(r)$$\neq$$0$ and $S(r)$$=$$0$ related to scalar and mass interactions. Moreover, we have founded a closeness for introduced approximation scheme for range of $0.5$ and $1.0$ $\mathrm {fm}$. In this way, minimal coupling might also yields analytically energy spectra. Within the spin-zero relativistic regime, we have considered the inverse-square interaction under uniform magnetic field and founded that the energy levels increase with increasing interaction energy (i.e, quantum well width decreases for given values). Additionally, energy levels increase with larger values of the uniform magnetic fields. The charge distributions is also valid for the central interaction-confinement space. Putting the approximation to spin-zero motion with $V(r)$$\neq$$0$ and $S(r)$$=$$0$, one can introduced solvable model in the 2D polar space.