论文标题
双变量不变原理
A Bivariate Invariance Principle
论文作者
论文摘要
布尔函数分析的一个值得注意的结果是基本不变性原理(BIP),这是多线性多项式中心极限定理的定量非线性概括。我们提出了BIP的概括,用于双变量多项式多项式,即在两个N长度随机变量的序列上的多项式。该双变量不变性原理源于BIP的迭代应用,以限制误差替换两个输入序列中的每个序列。为了证明这种不变性原理,我们首先是为随机多线性多项式的BIP版本而得出的,即其系数为随机变量的多项式。作为基准,我们还陈述了一个天真的双变量不变性原理,该原理将两个输入序列视为一个,并直接应用BIP。这两个原理都不是普遍强的,但我们确实表明,对于一类显着的双变量函数,我们称其为可分离函数,我们的微妙原理比幼稚的基准要高。
A notable result from analysis of Boolean functions is the Basic Invariance Principle (BIP), a quantitative nonlinear generalization of the Central Limit Theorem for multilinear polynomials. We present a generalization of the BIP for bivariate multilinear polynomials, i.e., polynomials over two n-length sequences of random variables. This bivariate invariance principle arises from an iterative application of the BIP to bound the error in replacing each of the two input sequences. In order to prove this invariance principle, we first derive a version of the BIP for random multilinear polynomials, i.e., polynomials whose coefficients are random variables. As a benchmark, we also state a naive bivariate invariance principle which treats the two input sequences as one and directly applies the BIP. Neither principle is universally stronger than the other, but we do show that for a notable class of bivariate functions, which we term separable functions, our subtler principle is exponentially tighter than the naive benchmark.