论文标题
自上而下的星系聚类:流式模型仿真器i
Galaxy clustering from the bottom up: A Streaming Model emulator I
论文作者
论文摘要
在这一系列论文中,我们基于基于真实空间和速度统计中聚类的单独建模的星系的非线性聚类提供了一个基于仿真的模型。在第一篇论文中,我们提出了星系真实空间相关函数的仿真器,而第二篇论文则介绍了基于速度统计的真实到红移空间映射的模拟器。在这里,我们表明,在N-Body模拟的Dark Quest Suite中提取的数据培训的真实空间星系聚类的神经网络模拟器可在尺度上获得少量精确度,$ 1 <r <30 $ $ h^{ - 1}} { - 1} \,\ Mathrm {mppc} $,并且比$ 3 $ 3 $ $ r <1 $ r <1 $ r <1 $ r < $ h^{ - 1} \ mathrm {mpc} $在预测具有数字密度$ 10^{ - 3.5} $ $(h^{ - 1} \ Mathrm {mpc} \ Mathrm {mpc})的深色halo的聚类时光环仿真器可以与Galaxy-Halo连接模型结合使用,以通过Halo模型预测星系相关函数。我们证明,当Galaxy聚类仅取决于星系的宿主光晕质量时,我们准确地恢复了宇宙学和星系 - Halo连接参数。此外,当包括小于$ 5 $ $ h^{ - 1} \,\ mathrm {mpc} $的比例时,$σ_8$中的约束功率增加了约2美元。但是,当质量不是唯一负责星系聚类的属性时,如在银河系形成的流体动力学或半分析模型中所观察到的时,我们的仿真器对$σ_8$的模拟器产生了偏见的约束。当小尺度($ r <10 $ $ h^{ - 1} \ mathrm {mpc} $)被排除在分析中时,这种偏见就消失了。这表明香草晕模型可以将偏见引入对未来数据集的分析中。
In this series of papers, we present a simulation-based model for the non-linear clustering of galaxies based on separate modelling of clustering in real space and velocity statistics. In the first paper, we present an emulator for the real-space correlation function of galaxies, whereas the emulator of the real-to-redshift space mapping based on velocity statistics is presented in the second paper. Here, we show that a neural network emulator for real-space galaxy clustering trained on data extracted from the Dark Quest suite of N-body simulations achieves sub-per cent accuracies on scales $1 < r < 30 $ $h^{-1} \,\mathrm{Mpc}$, and better than $3\%$ on scales $r < 1$ $h^{-1}\mathrm{Mpc}$ in predicting the clustering of dark-matter haloes with number density $10^{-3.5}$ $(h^{-1}\mathrm{Mpc})^{-3}$, close to that of SDSS LOWZ-like galaxies. The halo emulator can be combined with a galaxy-halo connection model to predict the galaxy correlation function through the halo model. We demonstrate that we accurately recover the cosmological and galaxy-halo connection parameters when galaxy clustering depends only on the mass of the galaxies' host halos. Furthermore, the constraining power in $σ_8$ increases by about a factor of $2$ when including scales smaller than $5$ $h^{-1} \,\mathrm{Mpc}$. However, when mass is not the only property responsible for galaxy clustering, as observed in hydrodynamical or semi-analytic models of galaxy formation, our emulator gives biased constraints on $σ_8$. This bias disappears when small scales ($r < 10$ $h^{-1}\mathrm{Mpc}$) are excluded from the analysis. This shows that a vanilla halo model could introduce biases into the analysis of future datasets.