论文标题
稳定的基于同源的周期中心度测度
Stable Homology-Based Cycle Centrality Measures
论文作者
论文摘要
网络中心度措施在理解图形结构,根据基于导向或由顶点和边缘编码的相互作用的相互作用评估节点,路径或周期的重要性中起着至关重要的作用。埃斯特拉达(Estrada)和罗斯(Ross)将这些措施扩展到简单的复合体,以解释高阶连接。在这项工作中,我们通过利用循环的代数及其同源持久性来引入新的中心度度量。我们应用来自代数拓扑的工具来提取加权图的周期空间内的多尺度特征,跟踪同源性发电机在重量诱导的过滤中,对构建的尖云的简单络合物的过滤持续存在。这种方法结合了沿着过滤的同源类别类别的持久签名和合并信息,不仅通过几何和拓扑意义,而且还通过对其他周期的同源影响来量化循环重要性。我们使用适当的度量标准证明了这些措施在小扰动下的稳定性,以确保在实际应用中稳健性。最后,我们将这些措施应用于分形点云,揭示其检测信息与常见拓扑总结相一致并可能被忽视的信息的能力。
Network centrality measures play a crucial role in understanding graph structures, assessing the importance of nodes, paths, or cycles based on directed or reciprocal interactions encoded by vertices and edges. Estrada and Ross extended these measures to simplicial complexes to account for higher-order connections. In this work, we introduce novel centrality measures by leveraging algebraically-computable topological signatures of cycles and their homological persistence. We apply tools from algebraic topology to extract multiscale signatures within cycle spaces of weighted graphs, tracking homology generators persisting across a weight-induced filtration of simplicial complexes built over point clouds. This approach incorporates persistent signatures and merge information of homology classes along the filtration, quantifying cycle importance not only by geometric and topological significance but also by homological influence on other cycles. We demonstrate the stability of these measures under small perturbations using an appropriate metric to ensure robustness in practical applications. Finally, we apply these measures to fractal-like point clouds, revealing their capability to detect information consistent with, and possibly overlooked by, common topological summaries.