论文标题
随机无序的晶格中的自旋波理论:海森堡·铁磁铁
Spin-wave theory in a randomly disordered lattice: A Heisenberg ferromagnet
论文作者
论文摘要
从哈密顿人的海森堡铁磁铁开始,它包括随机分布的非磁离子作为勇敢的晶格中的杂质,我们通过第二个量化的bose oberators dyson-maleev转换来表达自旋算子。然后,通过使用量子统计场理论的方法,我们得出了系统的分区函数和自由能。我们对哈密顿量的一部分采用Matsubara热扰动方法,该方法描述了镁质与非磁离子的固定场之间的相互作用。在对所有可能的杂质分布进行平均时,我们表达系统的自由能作为平均杂质浓度的函数。随后,我们根据磁杆操作员在动量空间中在温度t处建立了双倍的单个粒子绿色函数,并通过Heisenberg运动方程得出了绿色函数的运动方程,然后求解所得方程。由此,我们计算系统的自我能源,然后计算系统的光谱密度。我们将形式主义应用于简单的立方晶格的情况,并计算状态的密度,光谱密度函数和镁的寿命作为能量的函数,用于晶格中非磁离子的平均浓度的几个值。我们计算磁通能谱是平均杂质浓度分数C的函数,这表明对于低含量状态,激发能在研究范围内与C连续增加0.1 <c <0.7。我们使用光谱密度函数来计算一些热量。我们已经以统一的方式获得了构型平均物理量的封闭形式表达式,作为C的函数,可在关键渗透浓度以下的任何c的c orders conts cont。
Starting from the hamiltonian for the Heisenberg ferromagnet which comprise randomly distributed nonmagnetic ions as impurities in a Bravais lattice, we express the spin operators by means of the Dyson-Maleev transformation in terms of the Bose operators of the second quantization. Then by using methods of quantum statistical field theory, we derive the partition function and the free energy for the system. We adopt the Matsubara thermal perturbation method to a portion of the hamiltonian which describes the interaction between magnons and the stationary field of nonmagnetic ions. Upon averaging over all possible distributions of impurities, we express the free energy of the system as a function of the mean impurity concentration. Subsequently, we set up the double-time single particle Green function at temperature T in the momentum space in terms of magnon operators and derive the equation of motion for the Green function through the Heisenberg equation of motion and then solve the resulting equation. From this, we calculate the self-energy and then the spectral density for the system. We apply the formalism to the case of the simple cubic lattice and compute the density of states, the spectral density function and the lifetime of the magnons as a function of energy for several values of the mean concentration of nonmagnetic ions in the lattice. We calculate magnon energy spectrum as a function of average impurity concentration fraction c, which shows that for low lying states, the excitation energy increases continuously with c in the studied range 0.1 < c < 0.7. We use the spectral density function to compute some thermal quantities. We have obtained closed form expressions for the configurationally averaged physical quantities of interest in a unified fashion as functions of c to any order of c applicable below a critical percolation concentration.