论文标题

视觉跨视图指标定位,并具有致密的不确定性估计

Visual Cross-View Metric Localization with Dense Uncertainty Estimates

论文作者

Xia, Zimin, Booij, Olaf, Manfredi, Marco, Kooij, Julian F. P.

论文摘要

这项工作介绍了用于户外机器人技术的视觉跨视图定位。给定一个地面颜色图像和包含当地环境的卫星贴片,任务是确定地面摄像头在卫星贴片中的位置。相关工作解决了射程传感器(LIDAR,RADAR)的这一任务,但对于视觉,仅作为初始跨视图图像检索步骤之后的次要回归步骤。由于也可以通过任何粗糙的本地化(例如,从GPS/GNSS,时间过滤)检索本地卫星贴片,因此我们删除图像检索目标并仅关注度量定位。我们设计了一种具有较密集的卫星描述符的新型网络体系结构,在瓶颈处匹配的相似性(而不是在图像检索中的输出)以及一个密集的空间分布作为输出,以捕获多模式定位歧义。我们将使用全局图像描述符的最新回归基线进行比较。对最近提出的活力和牛津机器人数据集的定量和定性实验结果验证了我们的设计。产生的概率与定位精度相关,甚至可以用来在未知的方向时大致估计地面摄像头的标题。总体而言,与最先进的面积相比,我们的方法将中值度量定位误差降低了51%,37%和28%,而在同一区域,跨越时间和时间上分别概括。

This work addresses visual cross-view metric localization for outdoor robotics. Given a ground-level color image and a satellite patch that contains the local surroundings, the task is to identify the location of the ground camera within the satellite patch. Related work addressed this task for range-sensors (LiDAR, Radar), but for vision, only as a secondary regression step after an initial cross-view image retrieval step. Since the local satellite patch could also be retrieved through any rough localization prior (e.g. from GPS/GNSS, temporal filtering), we drop the image retrieval objective and focus on the metric localization only. We devise a novel network architecture with denser satellite descriptors, similarity matching at the bottleneck (rather than at the output as in image retrieval), and a dense spatial distribution as output to capture multi-modal localization ambiguities. We compare against a state-of-the-art regression baseline that uses global image descriptors. Quantitative and qualitative experimental results on the recently proposed VIGOR and the Oxford RobotCar datasets validate our design. The produced probabilities are correlated with localization accuracy, and can even be used to roughly estimate the ground camera's heading when its orientation is unknown. Overall, our method reduces the median metric localization error by 51%, 37%, and 28% compared to the state-of-the-art when generalizing respectively in the same area, across areas, and across time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源