论文标题
在希尔伯特系数和依次概括的科恩 - 麦克劳雷模块上
On Hilbert coefficients and sequentially generalized Cohen-Macaulay modules
论文作者
论文摘要
本文表明,如果$ r $是Cohen-Macaulay本地戒指的同态图像,则$ r $ -Module $ m $是依次概括的Cohen-Macaulay,并且仅当Hilbert系数和所有区分差异参数$ m $的差异时,且仅当Hilbert系数与算法之间的差异。
This paper shows that if $R$ is a homomorphic image of a Cohen-Macaulay local ring, then $R$-module $M$ is sequentially generalized Cohen-Macaulay if and only if the difference between Hilbert coefficients and arithmetic degrees for all distinguished parameter ideals of $M$ are bounded.