论文标题

PLMCL:多标签图像分类的部分标签动量课程学习

PLMCL: Partial-Label Momentum Curriculum Learning for Multi-Label Image Classification

论文作者

Abdelfattah, Rabab, Zhang, Xin, Wu, Zhenyao, Wu, Xinyi, Wang, Xiaofeng, Wang, Song

论文摘要

多标签图像分类旨在预测图像中的所有可能标签。鉴于在每个培训图像中注释所有标签可能会很昂贵,通常将其作为部分标签学习问题。关于部分标签学习的现有作品的重点是仅用标签的子集注释每个培训图像的情况。一种特殊情况是在每个训练图像中仅注释一个正标签。为了进一步减轻注释负担并增强了分类器的性能,本文提出了一种新的部分标签设置,其中仅标记了训练图像的一个子集,每个图像仅带有一个正标签,而其余的训练图像仍然没有标记。为了处理这个新环境,我们建议一个端到端的深层网络PLMCL(部分标签动量课程学习),可以学会为部分标记和未标记的培训图像生成自信的伪标签。基于新型动量的法律通过考虑更新伪标签的速度,更新每个训练图像上的软伪标签,这有助于避免捕获低于自信的本地最小值,尤其是在训练的早期阶段,由于缺乏观察到的标签和对伪标签的信心。此外,我们还提出了一个信心的调度程序,以适应性地对不同标签进行易于锻炼的学习。广泛的实验表明,我们提出的PLMCL在三个不同数据集上的各个部分标签设置下都优于许多最先进的多标签分类方法。

Multi-label image classification aims to predict all possible labels in an image. It is usually formulated as a partial-label learning problem, given the fact that it could be expensive in practice to annotate all labels in every training image. Existing works on partial-label learning focus on the case where each training image is annotated with only a subset of its labels. A special case is to annotate only one positive label in each training image. To further relieve the annotation burden and enhance the performance of the classifier, this paper proposes a new partial-label setting in which only a subset of the training images are labeled, each with only one positive label, while the rest of the training images remain unlabeled. To handle this new setting, we propose an end-to-end deep network, PLMCL (Partial Label Momentum Curriculum Learning), that can learn to produce confident pseudo labels for both partially-labeled and unlabeled training images. The novel momentum-based law updates soft pseudo labels on each training image with the consideration of the updating velocity of pseudo labels, which help avoid trapping to low-confidence local minimum, especially at the early stage of training in lack of both observed labels and confidence on pseudo labels. In addition, we present a confidence-aware scheduler to adaptively perform easy-to-hard learning for different labels. Extensive experiments demonstrate that our proposed PLMCL outperforms many state-of-the-art multi-label classification methods under various partial-label settings on three different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源