论文标题
与Banach空间中的P角函数相关的新几何常数
New Geometric Constant Related to the P-angle Function in Banach Spaces
论文作者
论文摘要
在本文中,结合了Banach空间的P角函数和可以表征Hilbert空间的几何常数,定义了新的角几何常数。首先,本文探讨了新常数的基本特性,并获得了具有显着几何常数的一些不等式。然后,根据派生的不平等,本文研究了新常数与Banach空间的几何特性之间的关系。此外,将确定均匀的非方面的必要条件,以及均匀凸的足够条件,正常结构和固定点特性。
In this paper, combined with the P-angle function of Banach spaces and the geometric constants that can characterize Hilbert spaces, the new angular geometric constant is defined. Firstly, this paper explores the basic properties of the new constant and obtains some inequalities with significant geometric constants. Then according to the derived inequalities, this paper studies the relationship between the new constant and the geometric properties of Banach spaces. Furthermore, the necessary and sufficient condition for uniform non-squareness, and the sufficient conditions for uniform convexity, the normal structure and the fixed point property will be established.