论文标题

在线性分配问题及其应用程序中,与本地重量更新相对于本地重量更新的快速二重更新及其应用

Fast Primal-Dual Update against Local Weight Update in Linear Assignment Problem and Its Application

论文作者

Morita, Kohei, Shiroshita, Shinya, Yamaguchi, Yutaro, Yokoi, Yu

论文摘要

我们考虑在加权两分匹配问题中的动态情况:输入图中的边缘权重反复更新,并要求我们随时保持最佳匹配。一种微不足道的方法是每次更新时从头开始计算最佳匹配。在本文中,我们表明,如果每个更新均在一个顶点周围发生,那么Dijkstra算法的一次执行就足以借助双重解决方案来保持最佳性。作为我们结果的应用,我们提供了更快的嫉妒周期程序的实施,以查找不可分割的项目的无嫉妒分配。我们的算法以$ \ mathrm {o}(mn^2)$时间运行,而原始算法的限制为$ \ mathrm {o}(mn^3)$,其中$ n $和$ m $分别表示代理和物品的数量。

We consider a dynamic situation in the weighted bipartite matching problem: edge weights in the input graph are repeatedly updated and we are asked to maintain an optimal matching at any moment. A trivial approach is to compute an optimal matching from scratch each time an update occurs. In this paper, we show that if each update occurs locally around a single vertex, then a single execution of Dijkstra's algorithm is sufficient to preserve optimality with the aid of a dual solution. As an application of our result, we provide a faster implementation of the envy-cycle procedure for finding an envy-free allocation of indivisible items. Our algorithm runs in $\mathrm{O}(mn^2)$ time, while the known bound of the original one is $\mathrm{O}(mn^3)$, where $n$ and $m$ denote the numbers of agents and items, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源