论文标题
关于整个功能及其导数的独特问题
A uniqueness problem concerning entire functions and their derivatives
论文作者
论文摘要
我们确定所有整个函数$ f $,以便对于非零复合物值$ a \ neq b $含义$ f = a \ rightArrow f'= a $ and $ f'= b \ rightArrow f = b $ hold。这解决了唯一理论的开放问题。在这种情况下,我们给出了一个正常的标准,这本身可能很有趣。
We determine all entire functions $f$ such that for nonzero complex values $a\neq b$ the implications $f=a \Rightarrow f' =a$ and $f' =b \Rightarrow f=b$ hold. This solves an open problem in uniqueness theory. In this context we give a normality criterion, which might be interesting in its own right.