论文标题

带有监督学习的全面分发信号控制系统的绿色预测

Time-to-Green predictions for fully-actuated signal control systems with supervised learning

论文作者

Genser, Alexander, Makridis, Michail A., Yang, Kaidi, Ambühl, Lukas, Menendez, Monica, Kouvelas, Anastasios

论文摘要

最近,已经努力将信号阶段和时机(SPAT)消息标准化。这些消息包含所有信号交叉方法的信号相时机。因此,这些信息可用于有效的运动计划,从而导致更均匀的交通流和均匀的速度概况。尽管为半活化的信号控制系统提供了强大的预测,但预测完全驱动控制的信号相时仍具有挑战性。本文提出了使用聚合的流量信号和循环检测器数据的时间序列预测框架。我们利用最先进的机器学习模型来预测未来信号阶段的持续时间。线性回归(LR),随机森林(RF)和长期记忆(LSTM)神经网络的性能是针对天真基线模型评估的。结果基于瑞士苏黎世完全插入的信号控制系统的经验数据集,表明机器学习模型的表现优于常规预测方法。此外,基于树木的决策模型(例如RF)的表现最佳,具有满足实际应用要求的准确性。

Recently, efforts have been made to standardize signal phase and timing (SPaT) messages. These messages contain signal phase timings of all signalized intersection approaches. This information can thus be used for efficient motion planning, resulting in more homogeneous traffic flows and uniform speed profiles. Despite efforts to provide robust predictions for semi-actuated signal control systems, predicting signal phase timings for fully-actuated controls remains challenging. This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data. We utilize state-of-the-art machine learning models to predict future signal phases' duration. The performance of a Linear Regression (LR), a Random Forest (RF), and a Long-Short-Term-Memory (LSTM) neural network are assessed against a naive baseline model. Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods. Furthermore, tree-based decision models such as the RF perform best with an accuracy that meets requirements for practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源