论文标题

在异质卷积神经网络中进行安全的光学信息压缩

Hashing for Secure Optical Information Compression in a Heterogeneous Convolutional Neural Network

论文作者

Solyanik-Gorgone, Maria, Movahhed, Behrouz, Sorger, Volker J

论文摘要

近年来,异质机器学习加速器在科学,工程和工业中引起了重大兴趣。这些平台中的主要处理速度瓶颈来自(a)电子数据互连; (b)电流接口更新速率。鉴于此,通过减少摄像头及以后的数据吞吐量的需求来减少上述两个问题的信息压缩,可以减轻上述两个问题。在本文中,我们提出了一种基于Swifft的光学哈希和压缩方案 - 量子后的算法家族。高度光学硬件到载量的同态同态可以最佳地收获自由空间处理的良好潜力:先天并行性,低潜伏期张量的副元素乘法和傅立叶变换。该算法可以通过用超快速和信号触发的CMOS检测器阵列替换慢速高分辨率CMOS摄像机来替换加工速度的数量级增加。此外,以这种方式获取的信息将需要更低的传输吞吐量,更少的\ emph {in Silico}处理能力,存储,并将预先敲打,以促进廉价的光学信息安全性。这项技术有可能使异质卷积4F分类器的性能越来越近。

In the recent years, heterogeneous machine learning accelerators have become of significant interest in science, engineering and industry. The major processing speed bottlenecks in these platforms come from (a) an electronic data interconnect; (b) an electro-optical interface update rate. In this light, information compression implemented in native to incoming data optical domain could mitigate both problems mentioned above by reducing the demand on data throughput at the camera side and beyond. In this paper we present an optical hashing and compression scheme that is based on SWIFFT - a post-quantum hashing family of algorithms. High degree optical hardware-to-algorithm homomorphism allows to optimally harvest well-understood potential of free-space processing: innate parallelism, low latency tensor by-element multiplication and Fourier transform. The algorithm can provide several orders of magnitude increase in processing speed by replacing slow high-resolution CMOS cameras with ultra fast and signal-triggered CMOS detector arrays. Additionally, the information acquired in this way will require much lower transmission throughput, less \emph{in silico} processing power, storage, and will be pre-hashed facilitating cheap optical information security. This technology has a potential to allow heterogeneous convolutional 4f classifiers get closer in performance to their fully electronic counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源