论文标题
在基于距离的主要熵上:偏心率和维也纳肠道
On the main distance-based entropies: the eccentricity- and Wiener-entropy
论文作者
论文摘要
我们定义了Wiener-entropy,它与偏心度 - 凝聚是最自然的基于距离的图形熵之一。通过得出(渐近)极端行为,我们得出的结论是,给定秩序图的维也纳 - 透射率比偏心率 - 内部的情况更广泛。我们解决了偏心式 - 凝聚性的$ 3 $猜想,并对Wiener-entropy提出了与图形最小化的某些令人惊讶的行为有关的猜想。
We define the Wiener-entropy, which is together with the eccentricity-entropy one of the most natural distance-based graph entropies. By deriving the (asymptotic) extremal behaviour, we conclude that the Wiener-entropy of graphs of a given order is more spread than is the case for the eccentricity-entropy. We solve $3$ conjectures on the eccentricity-entropy and give a conjecture on the Wiener-entropy related to some surprising behaviour on the graph minimizing it.