论文标题

与配对的非对准训练数据的变形跨模式图像合成合成

Deformation equivariant cross-modality image synthesis with paired non-aligned training data

论文作者

Honkamaa, Joel, Khan, Umair, Koivukoski, Sonja, Valkonen, Mira, Latonen, Leena, Ruusuvuori, Pekka, Marttinen, Pekka

论文摘要

跨模式图像综合是一个活跃的研究主题,具有多个医学临床相关的应用。最近,允许对配对但未对准数据进行培训的方法开始出现。但是,没有适用于广泛的现实世界数据集的强大且良好的方法。在这项工作中,我们通过引入新的变形均衡性鼓励损失函数,对跨模式图像合成问题的问题提出了一个通用解决方案。该方法包括对图像合成网络的联合培训以及单独的注册网络,并允许在输入下进行对抗训练,即使数据不一致。这项工作通过允许对更困难的数据集进行跨模式图像合成网络的轻松培训来降低新的临床应用程序的标准。

Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data by introducing new deformation equivariance encouraging loss functions. The method consists of joint training of an image synthesis network together with separate registration networks and allows adversarial training conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by allowing effortless training of cross-modality image synthesis networks for more difficult data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源