论文标题

部分可观测时空混沌系统的无模型预测

The Foreseeable Future: Self-Supervised Learning to Predict Dynamic Scenes for Indoor Navigation

论文作者

Thomas, Hugues, Zhang, Jian, Barfoot, Timothy D.

论文摘要

我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,训练以预测3D激光镜框架作为输入,以预测SOGM的未来时间步骤。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可以预测SOGM表示中嵌入的未来信息,从而有可能捕获现实多元化的多代元素,多面互动的复杂性和不确定性。我们还设计了一个导航系统,该导航系统在将这些预测的SOGM在计划中使用后,将其转换为时空风险图(SRMS)后。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。

We present a method for generating, predicting, and using Spatiotemporal Occupancy Grid Maps (SOGM), which embed future semantic information of real dynamic scenes. We present an auto-labeling process that creates SOGMs from noisy real navigation data. We use a 3D-2D feedforward architecture, trained to predict the future time steps of SOGMs, given 3D lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for real robots. The network is composed of a 3D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2D front-end that predicts the future information embedded in the SOGM representation, potentially capturing the complexities and uncertainties of real-world multi-agent, multi-future interactions. We also design a navigation system that uses these predicted SOGMs within planning, after they have been transformed into Spatiotemporal Risk Maps (SRMs). We verify our navigation system's abilities in simulation, validate it on a real robot, study SOGM predictions on real data in various circumstances, and provide a novel indoor 3D lidar dataset, collected during our experiments, which includes our automated annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源