论文标题
量化非线性重力
Quantizing the non-linear graviton
论文作者
论文摘要
我们考虑有关扭曲空间的全态泊松BF理论。从经典上讲,这描述了时空上的自我双重爱因斯坦重力,但是在量子水平上,它会被异常困扰。异常对应于以下事实:自偶像真空爱因斯坦方程的整合性无法在自偶量子重力中生存。我们计算泊松-BF理论中的异常多项式,以及在该理论中与描述自dual-dual-dual-mills的扭曲空间的霍明型BF理论相结合。我们表明,通过进一步耦合到代表时空上的轴轴类型的扭曲场字段,可以取消所有异常。当取消扭曲器异常时,所有$ n \ geq4 $ - ppt振幅消失了,可整合性恢复。
We consider holomorphic Poisson-BF theory on twistor space. Classically, this describes self-dual Einstein gravity on space-time, but at the quantum level it is plagued by an anomaly. The anomaly corresponds to the fact that integrability of the self-dual vacuum Einstein equations does not survive in self-dual quantum gravity. We compute the anomaly polynomials in the Poisson-BF theory, as well as in this theory coupled to a holomorphic BF theory on twistor space describing self-dual Yang-Mills. We show that all anomalies may be cancelled by further coupling to a twistor field representing a type of axion on space-time. When the twistor anomalies are cancelled, all $n\geq4$-pt amplitudes vanish and integrability is restored.