论文标题
大脑链作为阿尔茨海默氏病的拓扑特征
Brain Chains as Topological Signatures for Alzheimer's Disease
论文作者
论文摘要
我们提出了一个拓扑框架来研究阿尔茨海默氏病的演变,这是最常见的神经退行性疾病。该疾病的建模始于大脑连接性作为图的表示,在特定区域中以顶点表示的有毒蛋白的播种。随着时间的流逝,有毒蛋白在顶点及其沿边缘的传播的积累是由该图上的动力学系统建模的。这些动力学根据高浓度的蛋白质造成的损害在图表的边缘上提供了顺序。边缘序列定义了图的过滤。我们考虑不同疾病播种位置给出的不同过滤。为了研究这种过滤,我们提出了一种新的组合和拓扑方法。过滤定义了由包含排序排序的部分跨度子图集中的最大链。为了识别类似的图并定义拓扑签名,我们通过图形同码等效性来对此poset,从而在较小的poset中赋予最大链。我们提供了一种算法来计算此直接商,而无需计算所有子图,然后提出有关均值等效性的图总数的界限。为了比较该方法生成的最大链,我们将Kendall的$ D_K $ Metric扩展到更为一般的级别posets并为该指标建立界限。然后,我们通过研究结构连接组上的tau蛋白的动力学来证明该框架在实际脑图上的实用性。 {我们表明,提出的拓扑脑链等效类别区分了阿尔茨海默氏病的不同模拟亚型。
We propose a topological framework to study the evolution of Alzheimer's disease, the most common neurodegenerative disease. The modeling of this disease starts with the representation of the brain connectivity as a graph and the seeding of a toxic protein in a specific region represented by a vertex. Over time, the accumulation of toxic proteins at vertices and their propagation along edges are modeled by a dynamical system on this graph. These dynamics provide an order on the edges of the graph according to the damage created by high concentrations of proteins. This sequence of edges defines a filtration of the graph. We consider different filtrations given by different disease seeding locations. To study this filtration we propose a new combinatorial and topological method. A filtration defines a maximal chain in the partially ordered set of spanning subgraphs ordered by inclusion. To identify similar graphs, and define a topological signature, we quotient this poset by graph homotopy equivalence, which gives maximal chains in a smaller poset. We provide an algorithm to compute this direct quotient without computing all subgraphs and then propose bounds on the total number of graphs up to homotopy equivalence. To compare the maximal chains generated by this method, we extend Kendall's $d_K$ metric for permutations to more general graded posets and establish bounds for this metric. We then demonstrate the utility of this framework on actual brain graphs by studying the dynamics of tau proteins on the structural connectome. {We show that the proposed topological brain chain equivalence classes distinguish different simulated subtypes of Alzheimer's disease.