论文标题
Landau奇异性和高阶根源
Landau Singularities and Higher-Order Roots
论文作者
论文摘要
兰道(Landau)在feynman图的奇异性上的工作表明,它们只能是三种类型:杆,对数差异或二次多项式的根。另一方面,存在许多Feynman积分,其奇异性涉及任意高阶多项式根。我们使用涉及在两个维度的四个维度和六度多项式的根部的立方根的混凝土示例研究了这一明显的悖论,并表明只能通过比一个更高的共同尺寸的运动学限制来接触这些高阶奇异性,从而避免了Landau的论点。
Landau's work on the singularities of Feynman diagrams suggests that they can only be of three types: either poles, logarithmic divergences, or the roots of quadratic polynomials. On the other hand, many Feynman integrals exist whose singularities involve arbitrarily higher-order polynomial roots. We investigate this apparent paradox using concrete examples involving cube-roots in four dimensions and roots of a degree six polynomial in two dimensions, and suggest that these higher-order singularities can only be approached via kinematic limits of higher co-dimension than one, thus evading Landau's argument.