论文标题
地图容器:基于地图的合作感知框架
Map Container: A Map-based Framework for Cooperative Perception
论文作者
论文摘要
合作感知的想法是从多辆车之间的共同感知数据中受益,并克服单车上车载传感器的局限性。但是,由于定位不准确,通信带宽和模棱两可的融合,多车信息的融合仍然具有挑战性。过去的实践通过放置精确的GNSS定位系统来简化问题,手动指定连接车辆的数量并确定融合策略。本文提出了一个基于地图的合作感知框架,称为MAP容器,以提高合作感知的准确性和鲁棒性,最终克服了这个问题。概念“地图容器”表示地图是将所有信息转换为地图坐标空间的平台,并将不同的信息源合并到分布式融合体系结构中。在拟议的地图容器中,考虑到传感器功能和地图功能之间的GNSS信号以及匹配关系,以优化环境状态的估计。对仿真数据集和房地车平台的评估结果验证了所提出的方法的有效性。
The idea of cooperative perception is to benefit from shared perception data between multiple vehicles and overcome the limitations of on-board sensors on single vehicle. However, the fusion of multi-vehicle information is still challenging due to inaccurate localization, limited communication bandwidth and ambiguous fusion. Past practices simplify the problem by placing a precise GNSS localization system, manually specify the number of connected vehicles and determine the fusion strategy. This paper proposes a map-based cooperative perception framework, named map container, to improve the accuracy and robustness of cooperative perception, which ultimately overcomes this problem. The concept 'Map Container' denotes that the map serves as the platform to transform all information into the map coordinate space automatically and incorporate different sources of information in a distributed fusion architecture. In the proposed map container, the GNSS signal and the matching relationship between sensor feature and map feature are considered to optimize the estimation of environment states. Evaluation on simulation dataset and real-vehicle platform result validates the effectiveness of the proposed method.