论文标题
使用混乱工程评估自适应和自我修复系统
On Evaluating Self-Adaptive and Self-Healing Systems using Chaos Engineering
论文作者
论文摘要
随着在各个领域中自适应系统的越来越多,越来越需要评估其正确行为的策略。尤其是旨在提供弹性和容忍度的自我修复系统,通常会在关键和高度动态的环境中处理意外的故障。它们的反应性和复杂行为使评估这些系统是否按照期望的目标执行起来挑战。最近,一些研究对缺乏自我修复行为的系统评估方法表示关注。 在本文中,我们提出了国际象棋,这是一种以混乱工程为基础的自适应和自我修复系统系统评估的方法。混乱工程是一种使系统遇到意外条件和场景的方法。它在帮助开发人员构建有弹性的微服务体系结构和网络物理系统方面表现出了巨大的希望。国际象棋通过使用混乱工程来评估自我修复系统可以承受这种扰动的能力来扭转这个想法。我们通过对自我修复的智能办公环境进行探索性研究来研究这种方法的可行性。该研究有助于我们探索方法的承诺和局限性,并确定需要额外工作的方向。我们总结了经验教训的摘要。
With the growing adoption of self-adaptive systems in various domains, there is an increasing need for strategies to assess their correct behavior. In particular self-healing systems, which aim to provide resilience and fault-tolerance, often deal with unanticipated failures in critical and highly dynamic environments. Their reactive and complex behavior makes it challenging to assess if these systems execute according to the desired goals. Recently, several studies have expressed concern about the lack of systematic evaluation methods for self-healing behavior. In this paper, we propose CHESS, an approach for the systematic evaluation of self-adaptive and self-healing systems that builds on chaos engineering. Chaos engineering is a methodology for subjecting a system to unexpected conditions and scenarios. It has shown great promise in helping developers build resilient microservice architectures and cyber-physical systems. CHESS turns this idea around by using chaos engineering to evaluate how well a self-healing system can withstand such perturbations. We investigate the viability of this approach through an exploratory study on a self-healing smart office environment. The study helps us explore the promises and limitations of the approach, as well as identify directions where additional work is needed. We conclude with a summary of lessons learned.