论文标题

线性弹性中接触问题的形状优化

Shape optimization for contact problems in linear elasticity

论文作者

Chaudet-Dumas, Bastien

论文摘要

本论文介绍了接触力学的形状优化。更具体地说,在较小的变形假设下考虑了线性弹性模型,并且假定弹性物体具有刚性基础的接触(滑动或带有Tresca摩擦)。所研究的数学配方是原始变异不平等的两个正则版本:惩罚配方和增强的Lagrangian配方。为了获得与这两种非差异公式相关的形状衍生物,我们建议一种基于定向衍生物的方法。特别是,我们得出了足够的条件,使溶液具有可分化的形状。这允许开发基于梯度的拓扑优化算法,该算法建立在这些衍生物和形状的级别表示上。该算法还受益于网状切割技术,该技术在每次迭代时都具有明确的形状表示,并使边界条件强烈应用在接触区域上。该方法的不同步骤已详细介绍。然后,为了验证该方法,提出了二维和三维基准测试的一些数值结果。

This thesis deals with shape optimization for contact mechanics. More specifically, the linear elasticity model is considered under the small deformations hypothesis, and the elastic body is assumed to be in contact (sliding or with Tresca friction) with a rigid foundation. The mathematical formulations studied are two regularized versions of the original variational inequality: the penalty formulation and the augmented Lagrangian formulation. In order to get the shape derivatives associated to those two non-differentiable formulations, we suggest an approach based on directional derivatives. Especially, we derive sufficient conditions for the solution to be shape differentiable. This allows to develop a gradient-based topology optimization algorithm, built on these derivatives and a level-set representation of shapes. The algorithm also benefits from a mesh-cutting technique, which gives an explicit representation of the shape at each iteration, and enables to apply the boundary conditions strongly on the contact zone. The different steps of the method are detailed. Then, to validate the approach, some numerical results on two-dimensional and three-dimensional benchmarks are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源