论文标题
超对称XYZ自旋链和PainlevéVI的最接近的邻近相关函数
Nearest-neighbour correlation functions for the supersymmetric XYZ spin chain and Painlevé VI
论文作者
论文摘要
我们研究了奇特长度和周期性边界条件的超对称XYZ自旋链的基态的最接近的邻居相关函数。根据与相应的八个Vertex型号的$ Q $ - 经营者有关的技术假设,我们表明它们可以完全按照Bazhanov和Mangazeev引入的Painlevévitau函数$ s_n $和$ \ bar s_n $来表达。此外,我们用PainlevéVIHamiltonian对相关函数进行解释。
We study nearest-neighbour correlation functions for the ground state of the supersymmetric XYZ spin chain with odd length and periodic boundary conditions. Under a technical assumption related to the $Q$-operator of the corresponding eight-vertex model, we show that they can be expressed exactly in terms of the Painlevé VI tau functions $s_n$ and $\bar s_n$ introduced by Bazhanov and Mangazeev. Furthermore, we give an interpretation of the correlation functions in terms of the Painlevé VI Hamiltonian.