论文标题

Eilenberg-Moore光谱序列和Hodge共同体分类的堆栈

Eilenberg-Moore spectral sequence and Hodge cohomology of classifying stacks

论文作者

Kubrak, Dmitry, Scavia, Federico

论文摘要

让$ g $成为一个平稳的连接还原组,而$ k $,$γ$是$ g $的中央子组。我们构建了Eilenberg-moore型光谱序列,这些频谱序列会融合到$ b(g/γ)$的Hodge和de Rham同胞。作为一个应用程序,基于Toda的作品并使用Totaro的不平等,我们表明,对于所有$ M \ geq 0 $ hodge and de rham共同体学代数,分类堆栈$ b \ mathrm {pgl} _ {4m+2} $ \ mathbb {f} _2 $是奇异$ \ mathbb {f} _2 $ - 相应谎言组的分类空间的体积学。从此,我们获得了$ h^{> 0}(\ Mathrm {gl} _ {4m+2},\ propatorName {sym}^J(\ Mathfrak {pgl} _ {4m+2}^\ vee))$ h^{> 0}的完整说明\ operatoTorname {sym}^j(\ mathfrak {pso} _ {4m+2}^\ vee))$ of $ \ m athbb {f} _2 $。

Let $G$ be a smooth connected reductive group over a field $k$ and $Γ$ be a central subgroup of $G$. We construct Eilenberg-Moore-type spectral sequences converging to the Hodge and de Rham cohomology of $B(G/Γ)$. As an application, building upon work of Toda and using Totaro's inequality, we show that for all $m\geq 0$ the Hodge and de Rham cohomology algebras of the classifying stacks $B\mathrm{PGL}_{4m+2}$ and $B\mathrm{PSO}_{4m+2}$ over $\mathbb{F}_2$ are isomorphic to the singular $\mathbb{F}_2$-cohomology of the classifying space of the corresponding Lie group. From this we obtain a full description of $H^{>0}(\mathrm{GL}_{4m+2}, \operatorname{Sym}^j(\mathfrak{pgl}_{4m+2}^\vee))$ and $H^{>0}(\mathrm{SO}_{4m+2}, \operatorname{Sym}^j(\mathfrak{pso}_{4m+2}^\vee))$ over $\mathbb{F}_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源