论文标题
CH-MARL:合作,异质多机构增强学习的多模式基准
CH-MARL: A Multimodal Benchmark for Cooperative, Heterogeneous Multi-Agent Reinforcement Learning
论文作者
论文摘要
我们为合作和异构多机构学习提供了多模式(视觉和语言)基准。我们介绍了一个基准的多模式数据集,其任务涉及在丰富的多房间环境中多个模拟异质机器人之间的协作。我们提供了一个集成的学习框架,最先进的多机构强化学习技术的多模式实现以及一致的评估协议。我们的实验研究了不同模式对多代理学习绩效的影响。我们还引入了代理之间的简单消息传递方法。结果表明,多模式为合作多学院学习带来了独特的挑战,并且在此类环境中推进多代理增强学习方法还有很大的空间。
We propose a multimodal (vision-and-language) benchmark for cooperative and heterogeneous multi-agent learning. We introduce a benchmark multimodal dataset with tasks involving collaboration between multiple simulated heterogeneous robots in a rich multi-room home environment. We provide an integrated learning framework, multimodal implementations of state-of-the-art multi-agent reinforcement learning techniques, and a consistent evaluation protocol. Our experiments investigate the impact of different modalities on multi-agent learning performance. We also introduce a simple message passing method between agents. The results suggest that multimodality introduces unique challenges for cooperative multi-agent learning and there is significant room for advancing multi-agent reinforcement learning methods in such settings.