论文标题

测量依赖性与隐藏信息的隐藏信息之间的权衡关系

Trade-off relations between measurement dependence and hidden information for factorizable hidden variable models

论文作者

Takakura, Ryo, Morisue, Kei, Watanabe, Issei, Kimura, Gen

论文摘要

根据隐藏变量模型框架内的基本假设之间的权衡关系,探讨了钟声定理。在本文中,认识到将隐藏变量纳入基本假设之一,我们提出了一种考虑其分布的措施,称为“隐藏信息”。该措施量化了基本上有助于经验统计的隐藏变量的数量。对于可取分的模型,隐藏的变量模型在不遵循测量独立标准的情况下满足“局部性”的隐藏变量模型,我们得出了新颖的放松的贝尔 - 贝尔·霍尔 - 霍尔 - 霍尼·霍尼 - 霍尔特(Bell-Chsh)的不平等。这些不平等阐明了CHSH场景中的测量依赖与隐藏信息之间的权衡关系。还揭示了该关系提供了必要且充分的条件,可以通过可因素的模型实现这些措施。

The Bell theorem is explored in terms of a trade-off relation between underlying assumptions within the hidden variable model framework. In this paper, recognizing the incorporation of hidden variables as one of the fundamental assumptions, we propose a measure termed `hidden information' taking account of their distribution. This measure quantifies the number of hidden variables that essentially contribute to the empirical statistics. For factorizable models, hidden variable models that satisfy `locality' without adhering to the measurement independence criterion, we derive novel relaxed Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequalities. These inequalities elucidate trade-off relations between measurement dependence and hidden information in the CHSH scenario. It is also revealed that the relation gives a necessary and sufficient condition for the measures to be realized by a factorizable model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源