论文标题

数据驱动的影响功能,用于基于优化的因果推断

Data-Driven Influence Functions for Optimization-Based Causal Inference

论文作者

Jordan, Michael I., Wang, Yixin, Zhou, Angela

论文摘要

我们研究了一种建设性算法,该算法通过有限差异近似于统计功能的Gateaux衍生物,重点是在 因果推断。我们研究了概率分布不知道的情况,但需要从数据估算。这些估计的分布导致了经验性Gateaux衍生物,我们研究了经验,数值和分析性GATEAUX衍生物之间的关系。从介入平均值(平均潜在结果)的案例研究开始,我们描述了有限差异与分析gateaux衍生物之间的关系。然后,我们得出对扰动和平滑数值近似速率的要求,以保留一步调整的统计益处,例如速率双重鲁棒性。然后,我们研究了更复杂的功能,例如动态治疗方案,无限马尔可夫决策过程中策略优化的线性编程公式以及因果推断中的灵敏度分析。更广泛地说,我们研究了基于优化的估计器,因为这会导致一类估计值,在这些估计中,通过回归调整的识别很简单,但在其较小的变化下获得影响功能并非如此。在存在任意约束的情况下近似偏差调整的能力说明了gateaux衍生物的建设性方法的有用性。我们还发现,功能(速率双重鲁棒性)的统计结构可以允许有限差异近似的保守率更少。但是,该属性可以特定于特定功能。例如,这是出于平均潜在结果(因此平均治疗效应)而发生的,但不是Infinite-Horizo​​n MDP策略价值。

We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing, with a focus on functionals that arise in causal inference. We study the case where probability distributions are not known a priori but need to be estimated from data. These estimated distributions lead to empirical Gateaux derivatives, and we study the relationships between empirical, numerical, and analytical Gateaux derivatives. Starting with a case study of the interventional mean (average potential outcome), we delineate the relationship between finite differences and the analytical Gateaux derivative. We then derive requirements on the rates of numerical approximation in perturbation and smoothing that preserve the statistical benefits of one-step adjustments, such as rate double robustness. We then study more complicated functionals such as dynamic treatment regimes, the linear-programming formulation for policy optimization in infinite-horizon Markov decision processes, and sensitivity analysis in causal inference. More broadly, we study optimization-based estimators, since this begets a class of estimands where identification via regression adjustment is straightforward but obtaining influence functions under minor variations thereof is not. The ability to approximate bias adjustments in the presence of arbitrary constraints illustrates the usefulness of constructive approaches for Gateaux derivatives. We also find that the statistical structure of the functional (rate double robustness) can permit less conservative rates for finite-difference approximation. This property, however, can be specific to particular functionals; e.g., it occurs for the average potential outcome (hence average treatment effect) but not the infinite-horizon MDP policy value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源