论文标题
单数方案的动机特征类
Motivic characteristic classes for singular schemes
论文作者
论文摘要
我们在动机borel-moore同源性中为单数代数品种构建特征类别,从而扩展了为光滑品种定义的切线束的动机欧拉类。我们定义的两个类别在动机同义理论的设置中,这是Brasselet-Schuermann-Yokura在G理论中构建的类的最高程度,以及Aluffi在Pro-Chow群体中构建的Pro-CSM类的顶级程度。我们将动机高斯公式的扩展为非平滑的适当品种。
We construct characteristic classes for singular algebraic varieties in motivic Borel-Moore homology, extending the motivic Euler class of the tangent bundle defined for smooth varieties. The two classes we define refine, in the setting of motivic homotopy theory, the top degree of the class constructed by Brasselet-Schuermann-Yokura in G-theory, and the top degree of the pro-CSM class constructed by Aluffi in pro-Chow groups. We deduce an extension of the motivic Gauss-Bonnet formula to non-smooth proper varieties.