论文标题
使用公共密钥嵌入机制隐藏在加密域中的可逆数据
Reversible Data hiding in Encrypted Domain with Public Key Embedding Mechanism
论文作者
论文摘要
考虑到主动取证中的公共密钥嵌入机制的前景(PKE)机制在分布式深度学习安全性方面的完整性或身份中,两个可逆的数据隐藏在加密域(RDH-ED)算法(rdh-ed)算法中具有PKE机制,而在公共功能中,可以通过启用函数的所有元素来启用函数的所有元素,而这些元素才能进行官能函数,而这些元素均可在官能函数上进行。第一种算法是单位加密域(DE-SBED)中的差异扩展,该算法是根据DE基于DE在空间域中的位操作从同构嵌入框架进行了优化的。 DE-SPUD适用于本文中选择了从任何单个位加密加密的图像的密文,并且在本文中选择了使用错误(LWE)加密。引入像素值排序以减少解密的失真并提高嵌入率(ER)。为了应用于更灵活的应用程序,提出了对加密冗余(PKR-ER)算法进行的公共密钥。公共嵌入密钥是通过重新编码LWE概率解密的冗余而构建的。无论培养基类型如何,它都适用于任何明文。通过为重新编码设置不同的量化规则,可以分离解密和提取功能。在明显的密文的直接解密结果中不存在失真,并且ER可以达到1.0位以上的纯文本。理论上通过推论密文和量化变量的概率分布来证明算法的正确性和安全性。实验结果证明了正确性的性能,安全性的单向属性和算法的效率。
Considering the prospects of public key embedding (PKE) mechanism in active forensics on the integrity or identity of ciphertext for distributed deep learning security, two reversible data hiding in encrypted domain (RDH-ED) algorithms with PKE mechanism are proposed, in which all the elements of the embedding function shall be open to the public, while the extraction function could be performed only by legitimate users. The first algorithm is difference expansion in single bit encrypted domain (DE-SBED), which is optimized from the homomorphic embedding framework based on the bit operations of DE in spatial domain. DE-SBED is suitable for the ciphertext of images encrypted from any single bit encryption and learning with errors (LWE) encryption is selected in this paper. Pixel value ordering is introduced to reduce the distortion of decryption and improve the embedding rates (ER). To apply to more flexible applications, public key recoding on encryption redundancy (PKR-ER) algorithm is proposed. Public embedding key is constructed by recoding on the redundancy from the probabilistic decryption of LWE. It is suitable for any plaintext regardless of the type of medium or the content. By setting different quantization rules for recoding, decryption and extraction functions are separable. No distortion exists in the directly decrypted results of the marked ciphertext and ER could reach over 1.0 bits per bit of plaintext. Correctness and security of the algorithms are proved theoretically by deducing the probability distributions of ciphertext and quantization variable. Experimental results demonstrate the performances in correctness, one-way attribute of security and efficiency of the algorithms.