论文标题
Neurips'22跨域元素竞争:设计和基线结果
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
论文作者
论文摘要
我们介绍了在Neurips'22接受的Chalearn Meta学习系列中的新挑战的设计和基线结果,重点是“跨域”元学习。元学习旨在利用从以前的任务中获得的经验,以有效地解决新任务(即具有更好的性能,较少的培训数据和/或适度的计算资源)。尽管该系列中的先前挑战集中在域内很少的学习问题上,但目的是有效地学习n-way K-shot任务(即N级培训示例中的N班级分类问题),但此竞争挑战参与者以解决“任何通道”和“任何射击”问题,并从各种领域中提出的问题(医疗保健,生态学,生物学,生物学,生物学,人类和其他人类),以及他们的人类和其他人,以及他们的其他人,以及他们的其他人。为此,我们创建了来自10个域的40个图像分类数据集的Meta-Album,我们从中创建了以多种“方式”(2-20范围内)和任意数量的“射击”(范围内)(在1-20范围内)的任务。竞争是由代码提交的,在Codalab挑战平台上进行了完全盲目测试。获奖者的代码将是开源的,从而使自动化机器学习解决方案的部署可以在几个域中进行几个弹片的图像分类。
We present the design and baseline results for a new challenge in the ChaLearn meta-learning series, accepted at NeurIPS'22, focusing on "cross-domain" meta-learning. Meta-learning aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with better performance, little training data, and/or modest computational resources). While previous challenges in the series focused on within-domain few-shot learning problems, with the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k training examples), this competition challenges the participants to solve "any-way" and "any-shot" problems drawn from various domains (healthcare, ecology, biology, manufacturing, and others), chosen for their humanitarian and societal impact. To that end, we created Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which we carve out tasks with any number of "ways" (within the range 2-20) and any number of "shots" (within the range 1-20). The competition is with code submission, fully blind-tested on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling the deployment of automated machine learning solutions for few-shot image classification across several domains.